top of page

Other Chiral Phase

Regis manufactures various Pirkle CSPs. These can separate a wide variety of enantiomers in numerous compound groups. Examples include:

• Aryl Propionic Acid Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)

• Agricultural Compounds

• Natural Products

• ß-Blockers

• Many Pharmaceuticals

Lot more data on enantiomer separations can be found on our website at


The ULMO chiral stationary phase was developed by Austrian researchers Dr. Georg Uray, Dr. Wolfgang Linder, and Dr. Nobert Maier. The ULMO CSP is based on a 3,5-dintrobenzoyl derivative of diphenylethylenediamine. This CSP has a general ability to separate the enantiomers of many racemate classes and is particularly good at separating the enantiomers of aryl carbinols.

3,5-dinitrobenzoyl Phenylglycine, a π-acceptor chiral phase, is based on 3,5-dinitrobenzoyl phenylglycine, covalently bonded to 5 µm aminopropyl silica. Phenylglycine columns are available in both L- and D- configurations. This CSP resolves a wide variety of compounds containing π-basic groups, including aryl-substituted cyclic sulfoxides, bi-ß-naphthol and its analogs, α-indanol and α-tetralol analogs, and arylsubstituted hydantoins. This CSP matches USP L36.

The π-acceptor leucine CSP is based on 3,5-dinitrobenzoyl leucine, covalently bonded to 5 µm aminopropyl silica. Columns derived from either L- or D- leucine are available. This phase demonstrates enhanced enantioselectivities for several classes of compounds, including benzodiazapines.

β-Gem1 π-acceptor CSP
Alpha-Bruke 2

β-Gem1 is a π-acceptor chiral stationary phase and is prepared by covalently bonding N-3, 5-dinitrobenzoyl-3-amino- 3-phenyl-2-(1,1- dimethylethyl)-propanoate, to 5 µm silica through an ester linkage. In many cases, this chiral phase considerably outperforms its widely used analog, phenylglycine. It can separate anilide derivatives of chiral carboxylic acids, including nonsteroidal anti-inflammatory agents. Available in (R,R) and (S,S) forms to invert elution order if desired. Selector/Phase Type is N-3, 5-dinitrobenzoyl-3-amino- 3-phenyl-2-(1,1-dimethylethyl)-propanoate.

α-Burke 2 phase is derived from dimethyl N-3,5-dinitro-benzoyl--amino2,2-dimethyl- 4-pentenyl phosphonate covalently bound to 5 μm silica. This π-acceptor chiral stationary phase is particularly valuable in the HPLC separation of ß-blocker enantiomers, an important class of cardiovascular drugs whose enantiomers often exhibit differing pharmacological activities. The a-Burke 2 has been specifically designed to separate the enantiomers of ß-blockers withoutchemical derivatization. In addition, it also resolves the enantiomers of many compounds separated on π-acceptor Pirkle type chiral stationary phases.

Prikle 1-J CSP

he Pirkle 1-J column is the latest in a series of CSPs from the research laboratories of Professor Pirkle. This new CSP contains an unusual ß-lactam structure which significantly alters its molecular recognition properties. The Pirkle 1-J is useful for the direct separation of underivatized ß-blocker enantiomers. It can also be used for the separation of the enantiomers of arylpropionic acid NSAIDs as well as other drugs.


The innovative DACH-DNB CSP was designed by Italian chemist, Professor Francesco Gasparrini, at Sapienza Universita di Roma. The DACH-DNB CSP, which contains the 3,5-dinitrobenzoyl derivative of 1,2-diaminocyclohexane, has been found to resolve a broad range of racemate classes including amides, alcohols, esters, ketones, acids, sulfoxides, phosphine oxides, selenoxides, phosphonates, thiophosphineoxide, phosphineselenide, phosphine-borane, beta-lactams, organometallics, atropisomers, and heterocycles.

Regis Blue Baner Logo.png
bottom of page